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In this paper, generalized functions are used in the configuration partition 
function for fluids composed of arbitrarily shaped, rigid particles. This 
leads to new expressions for the basic statistical thermodynamic ftmctions 
and some equations that may be useful in developing approximate theories, 
such as the scaled particle theory, for such fluids. The results are applicable 
to a large class of arbitrarily shaped, rigid particles and reduce exactly to the 
usual hard-sphere expressions. 

KEY W O R D S :  Statistical mechanics of arbitrary, rigid-particle systems; 
equations of state for arbitrary, rigid-particle fluids; use of generalized 
functions in statistical mechanics of rigid-particle systems; scaled particle 
theory equations for arbitrary, rigid-particle systems. 

1. I N T R O D U C T I O N  

Rigid-particle fluids have proven to be very useful in developing the statistical 
theory of real fluids. In particular, hard-sphere fluids have been studied 
extensively, a-4) Because of this, it is advantageous to develop a statistical 
theory that is specific to a rigid-particle fluid. Section 2 shows how this type 
of theory may be obtained by exploiting the discontinuous nature of the rigid- 
particle potential via the theory of generalized functions. The usefulness of  
this technique for rigid particles is illustrated by deriving new expressions 
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for the pressure and chemical potential for fluids composed of arbitrarily 
shaped, rigid particles. The generalized function representation of the parti- 
tion function used in Section 2 also facilitates the exact evaluation of the 
partition function for some coupled systems. This derivation and its possible 
applications are discussed in Sections 3 and 4. 

2. C A N O N I C A L  ENSEMBLE D I S T R I B U T I O N  F U N C T I O N S  
A N D  T H E  P A R T I T I O N  F U N C T I O N  

The system for consideration is one composed of N identical, arbitrarily 
shaped, rigid particles. These particles have been referred to as arbitons in 
previous research. C~) The particles, not necessarily convex, are assumed to 
have the following property: there must exist at least one point in the interior 
of a particle such that any line drawn outward from that point intersects the 
surface only once (see Fig. 1). If  more than one such point exists, then the 
most convenient one is chosen as the center of the particle. 

It is further assumed that the particles are large enough so that the 
translational and rotational degrees of freedom may be treated classically. 
The total partition function for this system is 

= (l/cr~.NN[ h 6N) f dr ~r dp N de N dp 'u e -~H (1) QN 

where a,, denotes the rotational symmetry number of a particle, h is Planck's 
constant, H is the classical Hamiltonian for the system, and fi = 1/kT. 
The integration in (1) is over the phase variables which describe the system; 
i.e., the N position coordinates r ~r, the N translational momentum coor- 
dinates FN, the N angular momentum coordinates p,~r, and the N internal 
coordinates e iv, which are taken to be the Eulerian angles (~, O, ~b) of the 
individual particles. For this system, the Hamiltonian is separable as 

N 

H = ~" (pi2/2m) @ H({pi'}) @ UN (2) 
i=1  

where H({pi'}) is the rotational contribution to the kinetic energy and UN 
is the total potential energy of interaction. It may be written as the pair- 
additive sum 

N 

uN = F, 
i > j ) l  

for rigid-particle systems. As is well known, (6) H({pi'}) may be written as 
a sum over particles, with each term depending o n  Pi '  and ei of a single 
particle. 
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((]) (b) 

(c) (d) 

Fig. 1. Two-dimensional projections of typical arbitons: (a) (an ellipsoid) and (b) are 
admissible arbiton particles with their centers marked i; (c, d) (a toroid) are examples of 
inadmissible arbitons. 

The integrals over the translational and rotational momenta in Eq. (l) 
may be evaluated, and QN is 

QN = ( 1 / N A a )  N q / r Z N  (3) 

where A is the thermal de Broglie wavelength, h/ (2~rrnkT)  1/2, q~ is the rota- 
tional partition function for a single particle, (Srr2/cr,,)(kT/h2)S/~(SIAIBlc) l/z, 
with I~ the moment of inertia about the ith principal axis of a particle, and 
ZN is the configuration partition function. It is defined as 

Z N ~ f drN de 'N e-~VN (4) 

where de i' denotes sin Oi dOi d~ i  d~bi . 
The Boltzmann factor, e -evN,  in Z N may be simplified considerably 

by utilizing the rigid nature of the interpartMe potential. The relative 
configuration of  any two particles ( i , j )  is fixed by ei ,  e j ,  and r and, 
depending on the shape of the particles, there exists a single-valued function 
cri~ = c~ij(ei, e j ,  r which gives the center-center contact distance crij for 
a given configuration. The interparticle potential is then 

uij ~ (z) for rij < crij 

0 for rij > ai3 

The Boltzmann factor for this pair is expressible in terms of the Heaviside 
function 

e-S~,~J = ~](rij - -  c~ij ) 
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where 

~/(x) = O, x < 0 

= 1  x > O  

Thus, the Boltzmann factor for the entire system is 

and Z~ is 

N 

e-ZUu = 1-[ ~(rij -- aij) 
i > j ~ l  

N 

= " I" d e ' "  I ]  - -  o'ij ) (5) 
# 

i > j ~ > l  

The configuration partition for a system in which a coupling parameter A 
is associated with particle 1 may be written as 

N 

ZN(A) = f dr N de 'N ~ ~/(r~j -- A~,) I~ v(r,k -- ~,~) (6) 

Clearly, for A = 0, particle 1 is completely uncoupled from the system and 
ZN(A = 0) = 87re~ZN_x, where ZN-1 is the configuration partition function 
for a system of N -- 1 identical solvent particles, and ~ is the system volume. 
This scaling is discussed in Section 3. 

The n-particle density correlation function of a A-coupled system of 
N particles is defined as 

g(~)(r", e"; A) = [(Srr2~)n/ZN(A)] f dr  x - "  de 'N-~ e -'tzu(~) 

This correlation function may be rewritten in terms of the generalized func- 
tions as 

g(")(r", en; A) ---- [(S~rZ~Q)"/ZN(A)] f dr ~-n de '~'-" 

N N 

j > l  l > k ~ 2  

However, in treating arbiton systems, it is more convenient to define reduced 
n-particle correlation functions as 

~(N")(r ", e"; A) = [(S~rZ.Q)n/ZN(A)] f dr ~-" de m-" e -'[U#~)-U"(~)] 

where Us(A) refers to the total potential energy of interaction of the subset 
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of particles {1, 2 ..... n} in a A-coupled system. In terms of the generalized 
functions, ~(u ~) is 

N 
~ ) ( r  ~, en; A) = [(87r20)"/Zx(A)] f dr" de '~ 1-I v(r~J -- Aa~j) 

j>n  

x 

and it is related to g~) by 

N N 

k > l ~ n  m > l  p > n  

(n)r  n gN tr , en; A) = l~I ~(r.- -- Aalj) l~I ~/(ru~ - az,~) ~(e)(r", e"; A) (8) 
j=2 /c:>t>l 

It should be noted that, for arbiton systems, the reduced correlation functions 
defined above arc continuous in all arguments, whereas the usual correlation 
functions are not. The discontinuities in g~)(r ~, e~; A) arise from the hard- 
particle interactions among the subset of particles {1, 2,..., n}. As shown in 
Eq. (7), these interactions are specifically excluded from the definition of 
~ ( n ) d r n  N I, , e'a; A). For example, g~)(ra~, e~2; A = 1) is known to be zero for 
ra2 < ~zz because of the interaction between 1 and 2, whereas 

g(2)~,. A 1) N \*12 , e l2 ;  

is nonzero for r~2 < a~2. Furthermore, from Eq. (8), it is apparent that 

- ( . z ) .  ~ ( 2 ) ~  gNt (q2  r~2 e]2 A=I)  = + ~ "A =I )  (9) , , ; g N  (r12 = 0"12 , r12 , el2 , 

The pressure of a system is related to Q~ by the expression 

p = kT[~( lnQN)/af2]r .~  

= k T [ a ( I . Z ~ ) / e O ] ~ , ~  

For arbitons, the pressure is 

p ----- p k T  -}- [p2kT/6~(S.z~)2] f dr 2 de '2 cq28(r12 - -  a12 ) g~)(h ,  r~, e l ,  e2 ; A= 1) 

Because ~ )  depends only on r~2 and ea2, the integrations over h and e~ 
may be carried out to obtain the result 

p = p k T +  1 2 3 2P k T  O'12GN(O'12 ) (10) 

where 

o.32GN(Cr12 ) [1/3(877.2)]  f d~12 de~2 3 ~(2)~ ^ . = az2 gN (r12 = ax2, rae, e12 , A = 1) (11) 
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Equation (10) is similar to the usual virial equation of state for hard spheres (1) 
in that it involves only "12~u"a a(2)r.ulz, e~2; A = 1), evaluated at contact, rl. 2 = % . 2 ,  

although in this case, it is angled-averaged as shown in Eq. (11). 
A simple expression for the chemical potential may also be derived from 

Eq. (6). By definition, 

t* = - -  [k T ~(lnQN)/eN]T.~ = - k  Tln(QN/ QN_O 

for large N. For the arbiton system, /, is 

I* /kT = 4- ln(pA a) - -  Inq~ - -  ln(Z~v/8~r.2f2ZN_~) (12) 

The final term above, denoted t**/kT, is exactly 

o 1 

t , ~ / k  r = _ | & (~/ea)[ln ZN(A)] 
, t  

0 

= [(N 1)/(8~r.2~).2] dA dr.2 ~z.28(r~.2 Acq.2) "~(.2~" _ _  - -  g . t c . l . r l 2  , e l . 2  , 

0 

(13) 

with 

J ~12 gN (r12=a~12, /'1"2, el.2, ~a.2GN(A%.2) = [1/3(8,r.2)] di~.2 de;.2 a ~(.2) ^ . A) (14) 

As in the equation of state, only the angle-averaged quantity, cTa.2G~r 
is involved in Eq. (13). This is the angle-averaged contact value of r~.2g~ ) 
(r~2, ea.2 ; A) for a A-coupled system. 

Thus, the determination of the equation of state and chemical potential 
for arbiton systems is reduced to one of determining the angle-averaged 
contact function c~a.2 GN(;~%.2). This is quite similar to the hard-sphere problem, 
except here the problem is complicated somewhat by the lack of spherical 
symmetry in the system. Presumably, the scaled particle theory, which has 
been quite successful in the case of hard spheres, could be applied to this 
problem. This will be discussed in Section 4. 

Before closing this section, it is useful to develop an equation which 
might be the basis for a scaled particle theory for arbitons. The Gibbs-Duhem 
relation for an isothermal, single-component system is (dp)r = p(d lx )r ,  so 
that the pressure for the system is given by 

P 

Using Eqs. (10) and (13), this is 

~p.2 cra.2GN(%2 ) = p.2 .f~ dA )t.2 %a.2G~v()~%~ ) -- .r~ do' p' fl~ d;~ A.2 %a.2G~r 

05) 
This is an integral equation for ea.2GN(%.2) and, if solved, it would provide 
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a virial equation of state for the system. One approximate solution of this is 
discussed in Section 4. Equation (15) is the arbiton version of a similar hard- 
sphere equation derived by Reiss et  al. (7) 

3. A N  E X A C T  E V A L U A T I O N  O F  o~2GN(~,CYlZ) 
FOR S O M E  V A L U E S  OF h 

In this section, (*a,2GN(ha,2) is evaluated exactly for a restricted range 
of A by explicitly using the generalized function representation of ZN(;~). 

In this case of a hard-sphere system, our result reduces exactly to the well- 
known expression derived and used by Reiss et  al. (7) in their scaled particle 
theory. 

The maximum and minimum values of a(f~j, ei~) will be denoted by 
amax and O ' m i n ,  respectively, k in the range )t ~< h* = crmin/2O'max will be 
considered. By direct differentiation of Eq. (6), ~Z~(A)/OA is 

~ZN(20/~)~ = - - ( N  - -  1) f dr x &,N (~12a(rl 2 _ _  ,~0,12 ) 

N N 
• 1-[ ~(rl~ -- ~O'1]) ]~[ ~?(rt~ -- crzk) (16) 

j=3 t> / c~2  

so that rl~ = )t~x2 in the integrand. A typical term in the integrand is 
~?(r i~ -  Ae~j)~/(r2~.- e~j). A necessary condition that this term [and 
~(r2j -- (r~j) itself] be nonzero is that r2j > O'min  �9 The triangle inequality for 
particles (l, 2, j )  with )~ ~< ),*, r12 = A~12, and r~- > Crmin is 

o r  

r12 q- rlj ~> r2j > (rmin 

rly > (Ymin - -  r12 = f fmin  - -  ~cr12 ~ O'min - -  ~ * ~ m a x  = Urn in /2  

1 so that rl~-=-2O'min-}-y, where y > 0. One property of the Heaviside 
function is ~7(x) >~ W(y) for x >~ y. Therefore, 

1 , ~](rlj  - -  ~Crlj ) ~ V(gCrm,n ~ -  ~ a*O 'max)  = ~ ( y )  ~ 1 

Thus, for A ~ A*, the quantity ~(r15- Aalj)~/(r2j- a2j) is equal to 
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N 
~](r2j -- %j). Moreover, this holds for all j ,  so the II~=a 7](rla - -  ~0"1J) term 
may be removed from the integrand in Eq. (16) and aZN/~h is 

where 

DZ~,(A)/a), = - - ( N  - -  1) f dry2 de[2 ~12c~(r12 - -  ~a12 ) 

N 

/ > k ~ 2  

= - - (N -- 1) f dr12 de[2 0.12~(r12 -- Aa12 ) ZN_ 1 

= --A2(N -- 1) ZN_~3(8~ -2) ~2 (17) 

P 
j , 3 (18) e12 = [1/3(8rr~)] d/r de12 O12 

Equation (17) may be integrated over ~t to give 

ZN(~) -- ZN(0) = --Za(N -- 1) Z~,_18# ~ 0"~2 

and since ZN(0) = 8~r2DZs_I, 

Z~c(A) = 8~r'LQZN_I(1 -- pA a a~2 ) (19) 

for 0 ~< )~ ~< a*. 
Similarly, %a2GN(;tcr,2 ) may be evaluated for these ). By definition, 

e~a.,~ ,, (5r = [1/3(8rr2~) 2] f dr 2 de '2 az23(q2 - -  Z o 1 2 )  gN'(2)(rz2 , e~2 ," )t) 

and this may be written as 

a~2GN()%~) = --(lf3p2t2)(~f&~)[ln ZN(A)] = -- [~Z~.(,~)IeA]I3pa~ZN(,~) 

Using Eqs. (17) and (19), we see that  this is 

cr~2GN()tcr~2 ) = a~/(1 -- p2 ~ 0.~2) (20) 

Since this is exact for ~ ~< 1", all of  the derivatives of 0.~.~GN()Cq2 } with 
respect to 2~ may be obtained from Eq. (20) for h < )t*. At  )t = )t*, however, 
the second derivative of 0.~2GN()r has a discontinuity. This is shown in 
the appendix. 
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The quantity %a defined in Eq. (18) has an interesting physical meaning. 
Clearly, 

is the volume contained in the surface determined by the locus of the set of 
points which the center of 2 takes as it moves around 1 for a fixed relative 
orientation el2. Then, V(e~2)is averaged over all relative orientation coor- 
dinates ez2 as 

(7123 = (1/8772) / d e ~  V(el2) d 

This is called the average excluded volume for particles 1 and 2. 
The quantity ~2G~r(/1(71z) is related in a simple way to the reversible 

work W(A) of A-coupling a solute particle in the system. For arbitrary A, 
W(A) is, by definition, 

f a 3 * W(/1) = - - k  T tn[ZN(A)/ZN(O)] = @3pkT dh' (7,2GN(/1%2)//'2 
0 

(21) 

Differentiating this, we obtain 

aW(/1)/aA = + 3pk T/12 %a2GN(/1%2 ) (22) 

and this gives the connection between %a2GN(/1%2 ) and W(A). Furthermore, 
using Eq. (20), W(A) may be evaluated exactly for 0 <~ A ~< A*. By direct 
integration, 

W(A) = - - k T  ln(1 -- pA 3 (7~2) (23) 

a result implying that for A ~< A*, the work of A-coupling is equivalent to the 
reversible work of forming a cavity of volume A a (7~2 in an arbiton fluid. 

Because A appears as a scalar multiplier of (TzJ in the Boltzmann factors 
involving particles (1,j), it represents a coupling by scaling in size of the 
particles in the system. For A < 1, the interaction between particle 1 and any 
other solvent particle is one between the two particles scaled down in size 
by a factor of A. The interactions between solvent particles are unaffected by 
this scaling, so they remain full-sized. The scaling is shown in Fig. 2. It should 
be noted that this coupling procedure is not unique. Others may be devised 
that produce the above results, although they are not as convenient as the 
one used here. 



10 Gary R. Dowling and H.  Ted Davis 

(a) (b) 

Fig. 2. The scaling procedure is actually the size scaling scheme shown here. Here, 
for ellipsoids, (a) is the fully coupled system and (b) is the ()t = �89 system. The 
dimensions and center-center contact distance of (b) are one-half of those in (a). 

4. C O N C L U D I N G  REMARKS 

In this paper, we have shown that it is both convenient and advantageous 
to develop a statistical theory of fluids that is specific to substances which 
interact via the rigid-particle potential. Systems of this sort are usually 
treated by passing to the rigid-particle limit in a statistical theory formulated 
for substances with a continuous interparticle potential. This technique, 
however, can lead to mathematical difficulties unless care is exercised in 
passing to the limit. As shown above, these difficulties can be avoided by 
using the singular nature of the hard-particle potential to express the Boltz- 
mann factors in terms of generalized functions. Furthermore, the reduced 
correlation functions arise naturally from this formulation of the theory 
and, therefore, are the best ones to use for hard-particle systems. Although 
the use of generalized functions is not intended to add any new physics to the 
analysis, it is intended to simplify the mathematics and, hopefully, to yield 
formulas suggestive of approximate solutions to the statistical problem. 

As mentioned in Section 2, the arbiton equations for p and /~ involve 
only the angle-averaged contact value of the pair correlation function for a 
A-coupled system. Therefore, it should be possible to develop a scaled particle 
theory for arbiton fluids. Gibbons (s,9) has proposed one such theory and has 
derived a compressibility equation of state for rigid, convex particle systems. 
His solution utilizes the results of Isihara and Hayashida (z~ and Kihara (m in 
expressing e~2 in Eq. (20) in terms of the volume, surface area, and mean 
radius of curvature of the solvent particles. Our result for ZN(,~) at )t = ;~*, 
Eq. (19), can be shown to agree exactly with his result. However, the extension 
of our result to his general form ZN(2t ) is not immediate. This suggests that it 
should be possible to derive an alternative form of the scaled particle theory 
for arbiton systems. 

As mentioned previously, hard spheres are admissible arbiton particles. 
Indeed, the above derivations may be reduced to the hard-sphere case by 
choosing the geometric center of a sphere as the center of an arbiton. For 
this case, then, A* = �89 and e~j is singled-valued, e~j = a. Thus, the deri- 
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vation of Eqs. (10), (13), (15), and (20) constitutes an alternative method of 
deriving both the thermodynamic functions and the basic scaled particle 
theory equations for hard-sphere systems. Furthermore, since Eq. (15)holds 
for all arbiton systems, the technique used to obtain an approximate solution 
for the hard-sphere problem may be directly applicable to general arbiton 
systems. 

A P P E N D I X :  E V A L U A T I O N  O F  OZc~zGN(h%2)/d~ z F O R  .~ = ~*+ 

In this appendix, the second derivative of (r~ZGN(A~rlZ) is shown to have 
a discontinuity at A = A *+. The first derivative for A ~ A*+ is 

- [ ( N  - -  1)/3p~%,~(,~)]  f gr"  de '~ ~ l ~ ( r ~  - -  , ~ )  

x M~(O/~rl~) + (~/0~,)] 

N N 
X [ I  r/(rxa - -  / ~ l J )  I-[  r/(rzv - -  ~t~) ( A . 1 )  

j=3 t > 7c >~ 2 

Since 

the differentiations above may be carried out and the second term above is 

[(N -- 1)(N -- 2)/3pA2ZN(A)] f dr N de 'N ~28(r12 --/~o-12)[--o-12~12 �9 ~13 t 2 -  O"13] 

N N 
~ I  ~ ( r l j  - -  )~  ]r~ 9~(r l l  c _ _  (Tllc) ~(F13 __ )O.13) 
j=4 l > k ~ 2  

= [(N -- 1)(N -- 2)/3p~(8zr292) 3] f dr a de '3 cq28(rl~ -- )~12) 3(qa -- )t~rla) 

• (--~qZ~lZ �9 ela + ~a) ~(r.~a -- %a) g~)(ra, eZ; A) (A.2) 

The definition of ~ )  has been used in obtaining Eq. (A.2). ~ )  is a scalar 
field that depends upon ~12, r r el~, elz, and e2a �9 Actually, this set of 
six vectors overspecifies the system. The entire set may be replaced by the set 
(r12, rla, r2a, ~1~, X, elz, e l , ,  e23), where X is the angle of rotation of the plane 
containing 1, 2, and 3 from some fixed vector ~ that is normal to ~12 �9 This 
bipolar coordinate system is shown in Fig. 3. This coordinate system provides 
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the bipolar coordinate system (q3 ,  r2a, X) for doing the ra integration. We 
have 

dr a = (qar2a/Q2) dr~a dr2a d x 

0 ~< Ga < 0% ]r12 - -  r la ] ~ r~a <~ rz~ q- Ga 

= 2 _ r~a)/2r12rla the term and 0 <~ X ~< 2~r. Also, since r12 " rla (r~2 q-, rla 
given by (A.2) is 

[--P/6~2(87r2) 3] f d]12 dx de '3 fi:11122~i:2)i dr2a 00120"12~2(0"22-~- 923) 

2 ~(a)~ 
--  o'12r=a~(r2a --  002a) gN [r12 = ho'l~, qa = 2t001a , r2a , X, e3; ~') (A.3) 

A necessary condit ion that  this be nonzero is that  r2a > 00rain, but  for  
k <~ A*, this can never happen, so (A.3) is zero and the first derivative is 
given by the first term in Eq. (A.1) alone. 

The second derivative is 

6pA[0"~J(t --  pAa001~)]2 -k 18(pA2) z [0"~/(1 --  ph s 0"~)]a -k A(A) (A.4) 

where A(~) is the derivative of  (A.3). For  A < h*, the only nonzero term in 
A(A), is the boundary  term, i.e., 

--[p/6(Szv2) a] f d~z2 dx de 'a (o~ _t_ 0013) 0012(0012 --  00"1200132 _ 001200132 _ 0.18 ) 

x ~(~(00~ + ~t . )  - 0"~a) 

• g~) (r12 = ~0012, r~ = Ar r23 = A(0012 -~ 00za), ~2 ,  X, ea; )t) (A.5) 

5 

x ,~ . . . . . . . . . . . . .  ~ . . . . . . . . . . . .  7 
I II 1 / 

�9 / 

/ / 
I st 

-r,z 2 

Fig. 3. A nonplanar, bipolar coordinate system. Particles 1, 2, and 3 are in a plane 
that is rotated around ~1~ by an angle x with respect to the reference 26~1~ plane. 



On the Statistical Mechanics of Rigid Particles 13 

F o r  A < A*, this is zero because o f  the ~7(A(cq2 -1- r ) - -  ~rzz). Depend ing  on 
the geomet ry  o f  the part ic les ,  i.e., the fo rm of  cr12, this m a y  be nonzero  for  
A = A*+. Thus~ for  A < A*, the second derivat ive is given by  the first two 
terms in (A.4) and  the d iscont inui ty  at  A *+ is given by (A.5). 
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